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In a reactive-monomer–small-molecule composite system, the degree of polymerization increases as time
proceeds, which results in a phase separation of these two components. Because during this process the system
is generally kept at a constant temperature, this separation is termed polymerization-induced phase separation
~PIPS!. In this paper we first calculated the polymerization degree as a function of time based on a kinetic
model for polymerization process@J. C. Lin and P. L. Taylor, Phys. Rev. E49, 2476~1994!#. We then analyzed
PIPS within the framework of the free energy of Flory and Huggins. The critical temperature of this composite
system is polymerization degree dependent, which is in turn also a function of time. The quench depth of the
PIPS system decreases with time due to the increase of critical temperature. To simulate PIPS, we mapped this
time-dependent quench scheme into a two-dimensional Ising model by gradually reducing the quench tem-
perature while letting the quench depth change with time as that in the PIPS system. Our simulation results
show that both reaction speed and temperature can influence the phase-separated domain size, which is in
qualitative agreement with experimental observations.@S1063-651X~96!05008-8#

PACS number~s!: 82.35.1t, 64.75.1g, 61.30.2v, 05.50.1q

I. INTRODUCTION

Phase separation phenomena have been extensively stud-
ied in the past two decades from both experimental and theo-
retical points of view@1#. The phase separation takes place
when a fluid system is quenched from the one-phase region
into the two-phase coexisting region~i.e., the unstable region
of its phase diagram!. Domains of coexisting phases grow
and coarsen in time, and in the later stages, all domain sizes
are much larger than any microscopic length. This is known
as thermal-quench-induced phase separation~TIPS!. In re-
cent years, phase separation in confined geometry@2#, dy-
namic coupling between phase separation and surface wet-
ting @3#, and competition between chemical reaction and
phase separation@4# are new and seminal topics.

Phase separation is not only of theoretical interest, but
also important for applications. For example, phase separa-
tion in a polymer–liquid-crystal composite system has found
application in flat panel liquid-crystal displays. Generally,
there are two kinds of polymer–liquid-crystal mixture sys-
tems with application potential: polymer-dispersed liquid
crystals and liquid-crystal dispersed polymers. As a typical
preparation procedure, a reactive monomer and liquid crys-
tals are mixed and rigorously stirred to form one homoge-
neous phase. The mixture is sealed between two plates. The
polymerization process commences on mixing, driving the
system into an unstable region. Phase separation then occurs.
Because the whole system is kept at a constant temperature,
this separation is termed polymerization-induced phase sepa-
ration ~PIPS!.

Although a great deal is known about TIPS, relatively
little work has been done on PIPS@5–9#. In this paper we
simulate PIPS by the Monte Carlo method. We do not simu-
late how the monomers are chemically bonded to form oli-
gomers and polymers and then separate from the liquid crys-
tal when the average polymerization degree increases.
Instead, we first analyze how a certain average of polymer-
ization degree evolves with time and how the critical tem-

perature for this composite system depends on the polymer-
ization degree. The critical temperature as well as the quench
depth therefore can be expressed as a function of time. On
these bases, PIPS can be regarded as TIPS by an appropriate
quench scheme, and it is also possible to understand PIPS by
simulating the TIPS with a proper quench~i.e., a time-
dependent quench!. We believe this scheme may reflect
some macroscopic properties of PIPS.

This paper is organized as follows. In Sec. II we discuss
the kinetic process of polymerization. Specifically, the aver-
age of the reciprocal of the polymerization degree for bifunc-
tional monomers is derived there. Then in Sec. III we ana-
lyze the phase separation process based on the free energy of
Flory and Huggins. The evolution of the quench depth as a
function of time is obtained there. The time-dependent
quench depth is then introduced in a two-component two-
dimensional Ising model in Sec. IV. The simulation results
of our proposed approach are also illustrated and discussed
in Sec. IV; they indicate that both the polymerization speed
and temperature can control the phase-separated domain size.
We finally conclude the whole paper in Sec. V.

II. KINETIC PROCESS OF POLYMERIZATION

The model we consider is initially a composite system of
monomers and liquid crystal with molecular concentrationp
and 12p, respectively. As time goes on, monomers chemi-
cally bond to form oligomers and then polymers. While the
monomers may be multifunctional, which is a simple case
for theoretical treatment, in practical cases, the monomers
may be bifunctional@10#. In the final stage, the mixture sys-
tem is actually a composition of liquid crystal and polymers
with various degrees of polymerization.

Let us discuss the kinetics of the polymerization process.
The central quantity of interest is the distribution function
P(N,t), defined as the probability that at timet, any site is
occupied by a monomer forming part of a polymer with a
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polymerization degreeN. Lin and Taylor@7# argued that the
master equation forP(N,t) is

dP~N,t !

dt
5
kN

2 (
m1n5N

A~m!P~m,t !A~n!P~n,t !

2kNA~N!P~N,t ! (
m51

1`

A~m!P~m,t !, ~1!

wherek is the temperature-dependent reaction rate constant
andA(m) is a function ofm depending upon the functional-
ity of the monomer. For example, for a bifunctional mono-
mer,A(m)52/m @11#. The first term on the right side of Eq.
~1! represents the rate at which anN-mer is formed by the
reaction of anm-mer and ann-mer (m1n5N) and the sec-
ond term represents the rate of removal ofN-mer by reaction
with other polymers of all possible sizes. Lin and Taylor
discussed only the multifunctional polymerization process
@7#. For bifunctional monomers, Eq.~1! reads

dP~N,t !

dt
52kN (
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P~m,t !P~n,t !
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24kP~N,t ! (
m51

1`
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m
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Equation~2! is more difficult to solve; however, we can still
get some information about the bifunctional polymerization
process.

Introducing a reduced timet5kpt and a normalized dis-
tribution functionQ(N,t)5P(N,t)/p, and lettingQ(N,t)/
N5R(N,t), we have from Eq.~2!

dR~N,t!

dt
52 (
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24R~N,t! (
m51

1`

R~m,t!. ~3!

Summarizing the above equation with respect toN, one gets

d

dt S (
m51
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R~m,t!D 522S (
m51

1`

R~m,t!D 2. ~4!

The boundary condition is, att50, ( m51
1` R(m,t)51. This

is related to the fact that before polymerization commences,
the degree of polymerization is 1. Integrating this differential
equation, we have( m51

1` R(m,t)51/(112t). Considering
^1/N&5( m51

1` Q(N,t)/N, we finally arrive at@12,13#

K 1NL 5
1

112t
. ~5!

III. CRITICAL TEMPERATURE
FOR PHASE SEPARATION

Flory and Huggins proposed a mean field expression for
the free energy of a polymeric system@9#, which was com-
bined with the theory of spindoal decomposition of Cahn and
Hilliard @14# by Kim and Palffy-Muhoray@6# and later by
Lin and Taylor @7# to discuss PIPS in a polymer–liquid-

crystal composite system. Here, we also employ this free
energy formalism to discuss PIPS.

Phase separation is driven by the free energy and the cor-
responding time scale is governed by diffusion, while the
polymerization proceeds at a rate governed by the kinetics of
the chemical reaction. However, if the rate for diffusion is
much smaller than that for reaction, then phase separation
can be considered as determined by the local free energy@7#.
In the Flory-Huggins mean field model of a solution of
N-mer, the free energyf per molecule is

F~p!5
f ~p!

kBT
5
p

N
ln p1~12p!ln~12p!1xp~12p!,

~6!

where x5[«ml2(«mm1« l l )/2]/kBT reflects the molecular
interaction and is generally positive~«ml , «mm, « l l are inter-
molecular interactions between monomer and liquid crystal,
monomer and monomer, and liquid crystal and liquid crystal,
respectively!, kB is Boltzmann’s constant, andT is tempera-
ture.

The polymer–liquid-crystal system is unstable when
F9(p),0. We have the spinodal line given by

F9~p!5
1

Np
1

1

~12p!
22x50. ~7!

If we take

a5~2«ml2«mm2« l l !/kB , ~8!

then Eq.~7! changes to

1

Np
1

1

12p
2
a

T
50, ~9!

i.e., for fixed 1/N, spinodal decomposition takes place at
temperature

T5
a

1/Np11/~12p!
. ~10!

We see that at a high temperature, spinodal decomposition
takes place when 1/N is small. We show in Fig. 1~a! the
spinodal curves in the temperature and concentration space
for various 1/N, where the temperature is in units ofa. For
each 1/N, the extremum point gives the critical temperature
(Tc) and critical concentration (pc):

pc5
1

111/A1/N
, ~11!

Tc5
a

~11A1/N!2
. ~12!

They can also be obtained directly fromF-(p)50. In Fig.
1~b! we plot the critical temperature~in units ofa! as well as
the spinodal temperature~also in units ofa! for different
polymer concentration as functions of 1/N, where one can
find that the critical temperature is actually the envelope of
the spinodal temperatures at various polymer concentrations.
As we stated above, after monomers react with each other to
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form oligomers and polymers, the mixture is a composition
of liquid crystal and polymer with various degrees of poly-
merizationN. 1/N in Eqs.~10!–~12! can be approximated by
the average of the inverse of polymerization degrees given
by Eq. ~5!.

Suppose the liquid-crystal–polymer composite system is
kept at temperatureTq . From Eqs.~10! and ~5!, one can
obtain the induction time@6#

t05
Tq2ap~12p!

2p@a~12p!2Tq#
. ~13!

Using Eqs.~5! and ~12!, we get the time-dependent quench
depth

Tq
Tc

5
Tq
a

@11A1/~112t!#2, ~14!

which will be extensively used in the next section.

IV. SIMULATION RESULTS AND DISCUSSION

We note that PIPS is similar to TIPS if one takes a proper
quench scheme. At the beginning, the system is in a homo-
geneous phase. As the polymerization process goes on, the
system is expelled into an unstable region and the quench
depth is gradually decreased due to the advancement of the
critical temperatureTc . The kinetics of phase separation in
polymer mixtures and small molecule mixtures is similar in
many respects and the kinetics is mainly determined by the
quench scheme@1#. In this sense, PIPS can be considered as
TIPS @15#. However, the thermal quench depth is time de-
pendent.

We performed Monte Carlo simulation of the PIPS by a
proper thermal quench scheme on two-dimensional square
lattices of size 2003200. At the beginning, each lattice was
initialized at a temperatureT5` with a molecule randomly
chosen to beA or B. HereA andB are different kinds of
molecules: e.g.,A is monomer andB is liquid crystal. The
concentration ofA is 0.5, which is the critical concentration
of this model. Although in a real polymer-dispersed liquid-
crystal system the polymer concentration is generally larger
than 0.5, and in a liquid-crystal-dispersed polymer case, the
polymer concentration is around 0.05, here the symmetric
quenching still captures the main properties of a real system.
Nearest-neighbor molecules interact with energy2J (J) if
the molecules are of the same~different! kinds ~J is posi-
tive!. Since our simulations were performed on a two-
dimensional square lattice, we can use Onsager’s solution of
the Ising model@16# to find the critical temperatureTc ,
which turns out to bekBTc50.567J. The configuration of the
system was updated according to the standard Metropolis
Monte Carlo scheme@17#. One Monte Carlo step~MCS!
includes an attempted exchange of every nearest-neighbor
molecule via Kawasaki dynamics@17#, i.e., the acceptance
probability

Pexch5
exp~2DE/kBTq!

11exp~2DE/kBTq!
,

whereDE5Efinal2Einitial , the difference between the ener-
gies of the system before and after the exchange. The quench
depth was changed according to Eq.~14!. In a real PIPS
process, the temperature is kept constant. As the polymeriza-
tion process goes on, the interactions between monomer and
monomer and between monomer and liquid crystal are also
changed, which induces the increment of the critical tem-
perature. Here, in our simulation, the critical temperature is
constant, however, we change the quench temperature to
keep the quench depth the same as in the PIPS system, in-
tending to mimic the interaction change in this system. There
is a time constant associated with Kawasaki dynamics that
sets the physical time scale. We took this constant equal to 1
in our simulation~i.e., t51 MCS!. The simulation was per-
formed under various conditions: different reaction rates and
different temperatures.

To test the validity of our program codes, we first con-
ducted the simulations with constant quench depth. We kept
the quench depth at 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5. One probe

FIG. 1. ~a! Spinodal lines in the temperature and concentration
parameter space at various polymerization degrees. From top to
bottom, 1/N50.001, 0.01, 0.1, and 1, respectively. The temperature
is in units ofa. For the definition ofa, please refer to the text.~b!
Spinodal temperatures~solid lines! and critical temperature~dotted
line! as a function of the inverse of polymerization degree (1/N).
For the spinodal temperatures, from top to bottom, the polymer
concentrations are 0.3, 0.5, and 0.7, respectively. The temperature is
also in units ofa. The critical temperature is the envelope of the
spinodal temperature at various polymer concentrations.
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in phase separation experiments is the dynamic structure fac-
tor S~k,t!, defined as the Fourier transform of the pair corre-
lation functionG~r ,t!:

G~r ,t !5
1

M (
r i

^@c~r i ,t !2c0#@c~r i1r !2c0#&,

S~k,t !5(
r
exp~ jk•r !G~r ,t !.

Herec0 is the average concentration which remains constant
during the evolution,r and r i run over theM lattice sites.
The angle bracketŝ& denote the ensemble average which is
realized in the simulations by making several independent
runs. To improve the accuracy and the presentation of data,
S~k,t! is further smoothed by averaging over all wave vec-
tors with magnitude betweenk andk1dk, known as spheri-
cal averaging@1#. In ordinary phase separation, the charac-
teristic wave vector moves to smaller values following a
quench to the unstable region. Experiments typically will
measure the peak positionkm as a function of time following
a quench. Here we calculate an equivalent quantity, the first
moment of structure factorS, k1 @1,4~a!#:

k1~ t !5
(kk~ t !S~k,t !

(kS~k,t !
.

k1(t) can be calculated more accurately than the peak posi-
tion. We calculatedk1 as a function of MCS for each quench
depth. The results are given in Fig. 2~a!. From Fig. 2~a! one
can see thatk1 does not behave well when the quench depth
is larger than 0.7: In some regions, the curves for different
quench depth are mixed up. However, a double logarithmic
plot shows that at larger MCS’s, the slope for each curve
tends to21

4, indicating the validity of our simulations@1#.
We also calculated the autocorrelation function of the

separated pattern, and then computed the average in all di-
rections ofr with ur u5const. The first zero crossing~FZC! in
the averaged one-dimensional autocorrelation function was
used as another probe for the phase-separated domain size.
Again we illustrate the results in Fig. 2~b!. We see that FZC
has a better behavior as compared tok1 . A double logarith-
mic plot also gives a slope of14 at larger MCS values. So, in
the following, we use bothk1 and FZC as probes of phase-
separated domain size.

A. Influence of polymerization speed

We studied the influence of polymerization speedk on the
phase-separated domain size, which is very critical for the
application of polymer-dispersed liquid crystals. Figure 3
shows some configurations generated by simulation. Mol-
ecules of liquid crystal~monomer! are shown as black
~white!. For Figs. 3~a! and 3~b!, MCS52000, Tq50.4a
~clearly, for this selected temperature, the monomer–liquid-
crystal composite system will not separate at the beginning!,
but k50.1 and 0.01, respectively. One can see that the do-

FIG. 2. First momentk1 ~a! and first zero crossing~b! as a
function of MCS for different simulation with constant quench
depth.

FIG. 3. Examples of 2003200 lattice configurations after PIPS
is triggered.~a! MCS52000, k50.1, Tq50.4a, ~b! MCS52000,
k50.01,Tq50.4a, ~c! MCS520 000,k50.01,Tq50.4a, and ~d!
MCS520000, k50.01, Tq50.3a. Molecules of liquid crystal
~monomer! are shown as black~white!. Note for ~a!, ~c!, and ~d!,
112kp3~MCS!5201, while for~b! it is 101.
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main size for Fig. 3~a! is smaller than that for Fig. 3~b!, also
see Figs. 4~a! and 4~b!. Experimental results show that when
the chemical reaction is increased, the domain size of the
phase-separated pattern is depressed@18#. This simulation
seems to support the real observation. As a matter of fact, as

the polymerization goes on, a gelation transition occurs at a
later stage, where the polymers form a network while the
polymerization degree tends to infinite. Apparently our
present model cannot take this transition into account. More
recent theories by Sciortinoet al. @19#, Glotzeret al. @4~a!#,
and Chen and Chen@20# seem useful. In our model, in order

FIG. 4. ~a! First momentk1 as a function of MCS for different
reaction speedk. Tq50.4a. The changes of quench depth with
MCS are shown in the inset.~b! First zero crossing of the autocor-
relation function of the separated pattern as a function of MCS.~c!
Polymerization speedk-dependentk1 and first zero crossing when
112kp3~MCS!5201.

FIG. 5. ~a! First momentk1 as a function of MCS for different
Tq . k50.01. The changes of quench depth with MCS are shown in
the inset.~b! First zero crossing of the autocorrelation function of
the separated pattern as a function of MCS.~c! Tq-dependentk1 and
first zero crossing when 112kp3~MCS!5201.
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to mimic this gelation, we just stop the simulation at a par-
ticular MCS so that 112kp3~MCS! remains constant~i.e.,
we let the polymerization degree become an arbitrarily larger
constant when gelation occurs!. A similar idea was used to
generate a porous medium@21#. Taking this ‘‘gelation’’ into
consideration, we know that phase separation stops at an
early time whenk is large and vice versa. Thus one should
not compare the domain size at the same MCS, but at the
same 112kp3~MCS! ~i.e., the same polymerization de-
gree!. Here we assume the maximum polymerization degree
is 201. Figure 3~c! shows another pattern when MCS
520 000. Other parameters are identical to those for Fig.
3~b!. We note that the polymers involved in Figs. 3~a! and
3~c! have the same polymerization degree. One can see that
the domain size of Fig. 3~c! is much larger than that of Fig.
3~a!, also see Fig. 4.

We have computed the structure factors and FZC under
various conditions. Figure 4~a! showsk1 as a function of
MCS for k50.1 and 0.01. The inset in Fig. 4~a! shows how
the quench depth changes with time. FZC as a function of
MCS is shown in Fig. 4~b!. From these two plots, we can see
FZC behaves similarly tok1 . To compare the domain size
for various k, we calculatedk1 and FZC at the same
k3~MCS!, here 200~i.e., N5201!. The result is shown in
Fig. 4~c!. Whenk increases, the domain size decreases. Here,
one should be more careful about the result in Fig. 4~c! be-
cause we keepk3~MCS! at an arbitrary number. Thus it
cannot amount to the real situation and can only be used as a
qualitative prediction of the relationship between the phase-
separated domain size and the polymerization speed.

B. Influence of temperature

We also performed the simulation at different temperature
Tq . Here, the temperature is in units ofa. However, when
the temperature is raised, the chemical reaction speedk is
also increased, and largerk results in a smaller phase-
separated domain size. Let us first assumek is invariant
when temperature changes.

Also shown in Fig. 3 is the simulated pattern for a differ-
ent temperature. For Fig. 3~d!, MCS520 000,k50.01, and
Tq50.3a, so 112kp3~MCS!5201. Compared to Fig. 3~c!,
one can see the domain size of Fig. 3~d! is smaller. Quanti-
tative evidence of this is shown in Fig. 5. In Fig. 5~a! we
give the relation betweenk1 and MCS for temperature
Tq50.4a and 0.3a. The inset is the quench depth evolution
with MCS. We also calculated the FZC for each case@see
Fig. 5~b!#. It is clear from Fig. 5~b! that higher temperature
will increase the phase-separated domain size. We still com-
puted FZC andk1 as a function ofTq while keeping the

polymerization degree at 201. Figure 5~c! clearly shows the
domain size increases with the increase of temperature.

As always observed, higher temperature results in a
higher polymerization speed,k1 , which tends to reduce the
phase-separated domain size. Thus the effects of temperature
are complicated. Actually, there are two competing effects,
enlarging or depressing the domain size. The real situation is
determined by the dominant effect. Without the chemical
information it is hard to say which one will prevail. That is
also the reason both effects have been reported@18#.

V. CONCLUSION

We have obtained a formula to describe how the polymer-
ization degree changes with time for a reactive-monomer–
small-molecule composite system based on a kinetic model
of polymerization. Within the framework of the free energy
of Flory and Huggins, we have also calculated the quench
depth as a function of time for the polymerization-induced
phase separation system. We suggest PIPS can be simulated
by TIPS with a proper quench scheme. Our simulation re-
sults show that the phase-separated domain size, which is
very important for the practical application of this system,
can be controlled by reaction rate and temperature. High po-
lymerization speed tends to depress the domain size, while
high temperature can increase or decrease the domain size,
depending on the influence of temperature on the chemical
reaction speed. When temperature has little effect on the po-
lymerization speed, high temperature tends to increase the
domain size, otherwise it will decrease the domain size.
These simulation results are qualitatively in agreement with
experimental observations. Our simulation can be easily ex-
tended to the three-dimensional case as well as off symmet-
ric quenching cases. As one can see from Eq.~1!, the poly-
merization we discussed here is a condensation process.
However, the presented idea is also applicable to a free radi-
cal polymerization process@22#, where the polymerization
degree has a different time dependent behavior.

Finally, let us point out the limitation of our approach.
Apparently, the final domain size in this liquid-crystal–
polymer composite system must be related to the gelation
phenomenon. In our model we cannot take this into account.
Hopefully, our approach can be merged with recent theories
@4~a!,19,20# to include gelation phenomenon. Further study
on the pinning effects in this system is in progress.
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