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Monte Carlo simulation of polymerization-induced phase separation
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In a reactive-monomer—small-molecule composite system, the degree of polymerization increases as time
proceeds, which results in a phase separation of these two components. Because during this process the system
is generally kept at a constant temperature, this separation is termed polymerization-induced phase separation
(PIPS. In this paper we first calculated the polymerization degree as a function of time based on a kinetic
model for polymerization proce$$. C. Lin and P. L. Taylor, Phys. Rev.4®, 2476(1994]. We then analyzed
PIPS within the framework of the free energy of Flory and Huggins. The critical temperature of this composite
system is polymerization degree dependent, which is in turn also a function of time. The quench depth of the
PIPS system decreases with time due to the increase of critical temperature. To simulate PIPS, we mapped this
time-dependent quench scheme into a two-dimensional Ising model by gradually reducing the quench tem-
perature while letting the quench depth change with time as that in the PIPS system. Our simulation results
show that both reaction speed and temperature can influence the phase-separated domain size, which is in
qualitative agreement with experimental observati¢84063-651X96)05008-§
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[. INTRODUCTION perature for this composite system depends on the polymer-
ization degree. The critical temperature as well as the quench
Phase separation phenomena have been extensively stutkepth therefore can be expressed as a function of time. On
ied in the past two decades from both experimental and thedhese bases, PIPS can be regarded as TIPS by an appropriate
retical points of view[1]. The phase separation takes placequench scheme, and it is also possible to understand PIPS by
when a fluid system is quenched from the one-phase regiosimulating the TIPS with a proper quendhe., a time-
into the two-phase coexisting regidire., the unstable region dependent quenghWe believe this scheme may reflect
of its phase diagram Domains of coexisting phases grow some macroscopic properties of PIPS.
and coarsen in time, and in the later stages, all domain sizes This paper is organized as follows. In Sec. Il we discuss
are much larger than any microscopic length. This is knownhe kinetic process of polymerization. Specifically, the aver-
as thermal-quench-induced phase separaffdRS). In re-  age of the reciprocal of the polymerization degree for bifunc-
cent years, phase separation in confined geonjéffydy-  tional monomers is derived there. Then in Sec. Ill we ana-
namic coupling between phase separation and surface wei;ze the phase separation process based on the free energy of
ting [3], and competition between chemical reaction andrjory and Huggins. The evolution of the quench depth as a
phase separatioi@] are new and seminal topics. function of time is obtained there. The time-dependent
Phase Separation is not Only of theoretical interest, bu&]uench depth is then introduced in a two_component two-
also important for applications. For example, phase separafimensional Ising model in Sec. IV. The simulation results
tion in a polymer-liquid-crystal composite system has foundsf our proposed approach are also illustrated and discussed
application in flat panel liquid-crystal displays. Generally,in Sec. IV; they indicate that both the polymerization speed
there are two kinds of polymer—liquid-crystal mixture sys- and temperature can control the phase-separated domain size.

tems with application potential: polymer-dispersed liquidye finally conclude the whole paper in Sec. V.
crystals and liquid-crystal dispersed polymers. As a typical

preparation procedure, a reactive monomer and liquid crys-
tals are mixed and rigorously stirred to form one homoge-
neous phase. The mixture is sealed between two plates. The
polymerization process commences on mixing, driving the The model we consider is initially a composite system of
system into an unstable region. Phase separation then occunsonomers and liquid crystal with molecular concentration
Because the whole system is kept at a constant temperaturgnd 1—p, respectively. As time goes on, monomers chemi-
this separation is termed polymerization-induced phase sepaally bond to form oligomers and then polymers. While the
ration (PIPS. monomers may be multifunctional, which is a simple case
Although a great deal is known about TIPS, relativelyfor theoretical treatment, in practical cases, the monomers
little work has been done on PIHS-9]. In this paper we may be bifunctional10]. In the final stage, the mixture sys-
simulate PIPS by the Monte Carlo method. We do not simutem is actually a composition of liquid crystal and polymers
late how the monomers are chemically bonded to form oli-with various degrees of polymerization.
gomers and polymers and then separate from the liquid crys- Let us discuss the kinetics of the polymerization process.
tal when the average polymerization degree increase§.he central quantity of interest is the distribution function
Instead, we first analyze how a certain average of polymerP(N,t), defined as the probability that at tinheany site is
ization degree evolves with time and how the critical tem-occupied by a monomer forming part of a polymer with a

II. KINETIC PROCESS OF POLYMERIZATION
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polymerization degredl. Lin and Taylor[7] argued that the crystal composite system. Here, we also employ this free
master equation foP(N,t) is energy formalism to discuss PIPS.

Phase separation is driven by the free energy and the cor-
responding time scale is governed by diffusion, while the
polymerization proceeds at a rate governed by the kinetics of
the chemical reaction. However, if the rate for diffusion is
much smaller than that for reaction, then phase separation

- kNA(N)P(N’t)mel A(MP(m,t), (1) can be considered as determined by the local free ef@lgy

In the Flory-Huggins mean field model of a solution of

wherek is the temperature-dependent reaction rate constafi-mer, the free energ§ per molecule is
andA(m) is a function ofm depending upon the functional- tp) p
ity of the monomer. For example, for a bifunctional mono- __\¥_F _ _ _
mer,A(m)=2/m [11]. The first term on the right side of Eq. (P) keT N n p+(1=p)in(1=p)+xp(1-p),
(1) represents the rate at which &hmer is formed by the (6)
reaction of amtm-mer and am-mer (m+n=N) and the sec-
ond term represents the rate of removaNefner by reaction where x=[em—(emmt &0)/2]/kgT reflects the molecular

with other polymers of all possible sizes. Lin and Taylorimer"JICtion and is generally positiVe, , &mm, & are inter-

discussed only the multifunctional polymerization processmc’lecmalr mtgractlons betwgern m(;)nomterl ang ll_|qu.|3 crysttall,
[7]. For bifunctional monomers, Eql) reads monomer and monomer, and liquid crystal and liquid crystal,

respectively, kg is Boltzmann’s constant, anf is tempera-

dP;N,t):k_N > AMP(MtAM)P(n,1)
t 2 m+n=N

+ oo

dP(N,t) P(m,t)P(n,t) ture.
dt =2kN 2 mn___ The polymer—liquid-crystal system is unstable when
mn=n F”(p)<0. We have the spinodal line given by
< P(mt)
—4kP(N,t) > . ) My L L oo

Equation(2) is more difficult to solve; however, we can still | \ye take

get some information about the bifunctional polymerization

process. a=2em—emm— &n)/Kg, €]
Introducing a reduced time=kpt and a normalized dis-

tribution functionQ(N,7)=P(N,7)/p, and lettingQ(N,7)/  then Eq.(7) changes to

N=R(N, ), we have from Eq(2)

1 N 1 a 0 ©
mzz > R(m,7)R(n,7) Npo1mp T
T mn=N i.e., for fixed 1N, spinodal decomposition takes place at
+oo temperature
—4R(N,7) >, R(m,7). ©)
m=1 a

T (10)

Summarizing the above equation with respeditmne gets UNp+1/(1=p)
q [+ foo 2 We see that at a high temperature, spinodal decomposition
el E R(m,7) |=—2 2 R(m,7) | . (4) takes place whe.n W is small. We show in Fig. (]a)_ the
d7 \m=1 m=1 spinodal curves in the temperature and concentration space

o o . for various 1N, where the temperature is in units af For

The boundary condition is, at=0, = ,Z;R(m,7)=1. This  each 1N, the extremum point gives the critical temperature

is related to the fact that before polymerization commences;T,) and critical concentrationp(.):

the degree of polymerization is 1. Integrating this differential

equation, we have® == R(m,7)=1/(1+27). Considering 1 11
o o : . = 11
(IIN)=% 1Z:Q(N, 7)/N, we finally arrive af12,13 Pc 1+ V1IN
1\ 1 5
¢ (14 VIIN)?

lll. CRITICAL TEMPERATURE

FOR PHASE SEPARATION They can also be obtained directly froff’(p)=0. In Fig.

1(b) we plot the critical temperatur@n units ofa) as well as
Flory and Huggins proposed a mean field expression fothe spinodal temperatur@lso in units ofa) for different
the free energy of a polymeric systd®], which was com- polymer concentration as functions ofNl/where one can
bined with the theory of spindoal decomposition of Cahn andind that the critical temperature is actually the envelope of
Hilliard [14] by Kim and Palffy-Muhoray{6] and later by the spinodal temperatures at various polymer concentrations.
Lin and Taylor[7] to discuss PIPS in a polymer—liquid- As we stated above, after monomers react with each other to
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1.0 : which will be extensively used in the next section.
(@)

IV. SIMULATION RESULTS AND DISCUSSION

We note that PIPS is similar to TIPS if one takes a proper
quench scheme. At the beginning, the system is in a homo-
geneous phase. As the polymerization process goes on, the
system is expelled into an unstable region and the quench
depth is gradually decreased due to the advancement of the
critical temperaturdl .. The kinetics of phase separation in
polymer mixtures and small molecule mixtures is similar in
many respects and the kinetics is mainly determined by the
guench scheml]. In this sense, PIPS can be considered as
0.0 ' ' ' ' TIPS [15]. However, the thermal quench depth is time de-

0.0 0.2 0.4 0.6 0.8 1.0 pendent.

Concentration (p) We performed Monte Carlo simulation of the PIPS by a
1.0 ‘ . proper thermal quench scheme on two-dimensional square
(b) lattices of size 208200. At the beginning, each lattice was
initialized at a temperaturé= with a molecule randomly
chosen to beA or B. Here A and B are different kinds of
molecules: e.g.A is monomer and is liquid crystal. The
concentration ofA is 0.5, which is the critical concentration
of this model. Although in a real polymer-dispersed liquid-
crystal system the polymer concentration is generally larger
than 0.5, and in a liquid-crystal-dispersed polymer case, the
polymer concentration is around 0.05, here the symmetric
gquenching still captures the main properties of a real system.
Nearest-neighbor molecules interact with energy (J) if
the molecules are of the santdiffereny kinds (J is posi-
0.0 : tive). Since our simulations were performed on a two-
1073 1072 107" 10° dimensional square lattice, we can use Onsager’s solution of
1/N the Ising model[16] to find the critical temperaturd.,
which turns out to b&gT.=0.567. The configuration of the

FIG. 1. (a) Spinodal lines in the temperature and concentrationsystem was updated according to the standard Metropolis
parameter space at various polymerization degrees. From top telonte Carlo schemg¢l7]. One Monte Carlo stegMCS)
bottom, 1IN=0.001, 0.01, 0.1, and 1, respectively. The temperaturdncludes an attempted exchange of every nearest-neighbor
is in units ofa. For the definition ofa, please refer to the textb) molecule via Kawasaki dynamid4.7], i.e., the acceptance
Spinodal temperaturgsolid lineg and critical temperaturéotted  probability
line) as a function of the inverse of polymerization degreeNj1/

For the spinodal temperatures, from top to bottom, the polymer _

concentra?ions are O.SF,)O.S, and 0.7, respzctively. The tempgra);ure is Pexcri= expt ~ AE/KeTo) ,

also in units ofa. The critical temperature is the envelope of the 1+exq_AE/kBTq)
spinodal temperature at various polymer concentrations.
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where AE=E,,—Einiial » the difference between the ener-

form oligomers and polymers, the mixture is a compositiondi€S Of the system before and after the exchange. The quench
of liquid crystal and polymer with various degrees of poly- depth was changed according to HG4). In a real PIPS
merizationN. 1/N in Egs.(10)—(12) can be approximated by Process, the temperature is kept constant. As the polymeriza-
the average of the inverse of polymerization degrees giveHOn Process goes on, the interactions between monomer and
by Eq. (5). monomer and between monomer and liquid crystal are also
Suppose the liquid-crystal—polymer composite system ighanged, which induces the increment of the critical tem-
kept at temperaturd,. From Egs.(10) and (5), one can perature. Here, in our simulation, the critical temperature is

obtain the induction tim¢6] constant, however, we change the quench temperature to
keep the quench depth the same as in the PIPS system, in-

T,—ap(1-p) tending to mimic the interaction change in this system. There

0= . (13) is a time constant associated with Kawasaki dynamics that

2p[a(1=p)=Tq] sets the physical time scale. We took this constant equal to 1

) ) in our simulation(i.e.,t=1 MCS). The simulation was per-
Using Eqs.(5) and (12), we get the time-dependent quench tormeqd under various conditions: different reaction rates and
depth different temperatures.

T To test the validity of our program codes, we first con-
_ Zq [1+VT(1+ 292 (14) ducted the simulations with constant quench depth. We kept

T
'q
T, the quench depth at 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5. One probe



1648 YANG-MING ZHU 54

1 -2 T T T T
(a) Quench depth
* 1.0
1.0 v
0.8 | -
-
0.6 |
0.4 |
0.2 ) L L L
10" 102  10® 10* 10°
MCS
25 T T 3
(b)
@ 20 n
c
‘o Quench depth
@ [ ]
215} '
o FIG. 3. Examples of 200200 lattice configurations after PIPS
o is triggered.(@) MCS=2000, k=0.1, Tq=0.4a, (b) MCS=2000,
o 10 | k=0.01,T,=0.4a, (c) MCS=20 000,k=0.01, T,=0.4a, and(d)
:' MCS=20000, k=0.01, T4=0.3a. Molecules of liquid crystal
0 (monomey are shown as blackwhite). Note for (a), (c), and(d),
T 9f 1+ 2kpX (MCS)=201, while for(b) it is 101.
0 ' ' ‘ ' _ Sk()S(kt)
10" 102 10% 10* 10° O="5 sko

k,(t) can be calculated more accurately than the peak posi-
FIG. 2. First moment, (a) and first zero crossingb) as a  tion. We calculated, as a function of MCS for each quench
function of MCS for different simulation with constant quench depth. The results are given in Figag From Fig. 2a) one
depth. can see that, does not behave well when the quench depth
is larger than 0.7: In some regions, the curves for different
in phase separation experiments is the dynamic structure faguench depth are mixed up. However, a double logarithmic
tor S(k,t), defined as the Fourier transform of the pair corre-plot shows that at larger MCS'’s, the slope for each curve
lation functionG(rt): tends to—3, indicating the validity of our simulationjsL].
We also calculated the autocorrelation function of the
1 separated pattern, and then computed the average in all di-
G(r,t)=— E ([e(r;,t)—colle(ri+r)—Ccol), rections ofr with [r|=const. The first zero crossif§ZC) in
M “r the averaged one-dimensional autocorrelation function was
used as another probe for the phase-separated domain size.
. Again we illustrate the results in Fig(ld. We see that FZC
S(k,t) = 2 exp(jk-r)G(r,t). has a better behavior as compareckio A double logarith-
mic plot also gives a slope dfat larger MCS values. So, in

. . . . the following, we use botlk,; and FZC as probes of phase-
Herec, is the average concentration which remains CO”Stanéeparated domain size

during the evolutiony andr; run over theM lattice sites.
The angle brackets) denote the ensemble average which is
realized in the simulations by making several independent
runs. To improve the accuracy and the presentation of data, We studied the influence of polymerization sp&ezh the
S(k,t) is further smoothed by averaging over all wave vec-phase-separated domain size, which is very critical for the
tors with magnitude betwednandk+ 6k, known as spheri- application of polymer-dispersed liquid crystals. Figure 3
cal averagind1]. In ordinary phase separation, the charac-shows some configurations generated by simulation. Mol-
teristic wave vector moves to smaller values following aecules of liquid crystal(monomey are shown as black
quench to the unstable region. Experiments typically will(white). For Figs. 3a) and 3b), MCS=2000, T,=0.4a
measure the peak positidg, as a function of time following (clearly, for this selected temperature, the monomer—liquid-
a quench. Here we calculate an equivalent quantity, the firstrystal composite system will not separate at the beginning
moment of structure factdd, k; [1,4@)]: but k=0.1 and 0.01, respectively. One can see that the do-

A. Influence of polymerization speed
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FIG. 4. (a) First momentk; as a function of MCS for different
reaction speek. Ty=0.4a. The changes of quench depth with
MCS are shown in the insetb) First zero crossing of the autocor-
relation function of the separated pattern as a function of MCS.
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FIG. 5. (a) First momentk; as a function of MCS for different
Tq- k=0.01. The changes of quench depth with MCS are shown in
the inset.(b) First zero crossing of the autocorrelation function of
the separated pattern as a function of M@$T,-dependenk; and
first zero crossing when-£2kpx(MCS)=201.

the polymerization goes on, a gelation transition occurs at a
later stage, where the polymers form a network while the

see Figs. &) and 4b). Experimental results show that when polymerization degree tends to infinite. Apparently our
the chemical reaction is increased, the domain size of thpresent model cannot take this transition into account. More

phase-separated pattern is depredded]. This simulation

recent theories by Sciortinet al. [19], Glotzeret al. [4(a)],

seems to support the real observation. As a matter of fact, @nd Chen and Chdr20] seem useful. In our model, in order
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to mimic this gelation, we just stop the simulation at a par-polymerization degree at 201. Figurécbclearly shows the
ticular MCS so that ¥ 2kpXx (MCS) remains constari.e., domain size increases with the increase of temperature.
we let the polymerization degree become an arbitrarily larger As always observed, higher temperature results in a
constant when gelation occir\ similar idea was used to higher polymerization speed,, which tends to reduce the
generate a porous mediul1]. Taking this “gelation” into  phase-separated domain size. Thus the effects of temperature
consideration, we know that phase separation stops at are complicated. Actually, there are two competing effects,
early time wherk is large and vice versa. Thus one shouldenlarging or depressing the domain size. The real situation is
not compare the domain size at the same MCS, but at thdetermined by the dominant effect. Without the chemical
same H2kpx(MCS) (i.e., the same polymerization de- information it is hard to say which one will prevail. That is
gree. Here we assume the maximum polymerization degrealso the reason both effects have been repditéi
is 201. Figure &) shows another pattern when MCS
=20000. Other parameters are identical to those for Fig.
3(b). We note that the polymers involved in FiggaBand ) )
3(c) have the same polymerization degree. One can see that e have obtained a formula to describe how the polymer-
the domain size of Fig.(8) is much larger than that of Fig. 1zation degree changes. with time for a reactive-monomer—
3(a), also see Fig. 4. smaII—moIe_cng composite system based on a kinetic model
We have computed the structure factors and FZC unde®f polymerization. Wlthln the framework of the free energy
various conditions. Figure(d) showsk, as a function of ©f Flory and Huggins, we have also calculated the quench
MCS for k=0.1 and 0.01. The inset in Fig(& shows how depth as a funct|0n of time for the ponmenzann-mduced
the quench depth changes with time. FZC as a function ophase separation system. We suggest PIPS can be simulated
MCS is shown in Fig. #). From these two plots, we can see by TIPS with a proper quench scheme. Our simulation re-
FZC behaves similarly t&,. To compare the domain size sults _ShOW that the phase-geparateq dpmam Size, which is
for various k, we calculatedk, and FZC at the same Very important for the pra_ctlcal application of this system,
kx (MCS), here 200(i.e., N=201). The result is shown in can be controlled by reaction rate and temperature. High po-
Fig. 4(c). Whenk increases, the domain size decreases. Herdymerization speed tends to depress the domain size, while
one should be more careful about the result in Fig) be- high temperature can increase or decrease the domain size,
cause we keefxx (MCS) at an arbitrary number. Thus it dependlng on the influence of temperature on the chemical
cannot amount to the real situation and can only be used as'gaction Speed- When.temperature has little effegt on the po-
qualitative prediction of the relationship between the phaselymerization speed, high temperature tends to increase the

These simulation results are qualitatively in agreement with

experimental observations. Our simulation can be easily ex-
tended to the three-dimensional case as well as off symmet-
We also performed the simulation at different temperaturgic quenching cases. As one can see from (E[ﬂthe p0|y-
Tq. Here, the temperature is in units af However, when  merization we discussed here is a condensation process.
the temperature is raised, the chemical reaction spesd  However, the presented idea is also applicable to a free radi-
also increased, and largér results in a smaller phase- cal polymerization procesg22], where the polymerization
Separated domain size. Let us first assumeés invariant degree has a different time dependent behavior.
when temperature changes. Finally, let us point out the limitation of our approach.
Also shown in Flg 3 is the simulated pattern for a differ- Apparenﬂy, the final domain size in this |iquid-cry5ta|_
ent temperature. For Fig(®, MCS=20000,k=0.01, and  polymer composite system must be related to the gelation
Ty=0.3, so 14+2kpXx (MCS)=201. Compared to Fig.(8),  phenomenon. In our model we cannot take this into account.
one can see the domain size of Figd)3is smaller. Quanti-  Hopefully, our approach can be merged with recent theories
tative evidence of this is shown in Fig. 5. In Figlabwe  [4(a),19,2( to include gelation phenomenon. Further study
give the relation betweerk; and MCS for temperature on the pinning effects in this system is in progress.
Ty=0.4a and 0.&. The inset is the quench depth evolution
with MCS. We also calculated the FZC for each casee
Fig. 5(b)]. It is clear from Fig. Bb) that higher temperature
will increase the phase-separated domain size. We still com- We thank Bill Fritz, E. Landry, P. L. Taylor, and D. K.
puted FZC andk, as a function ofT, while keeping the Yang for critical reading of this manuscript.

V. CONCLUSION

B. Influence of temperature
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